

The 'mitoflash' probe cpYFP does not respond to superoxide

E12 | NATURE | VOL 514 | 23 OCTOBER 2014

Markus Schwarzländer¹, Stephan Wagner¹, Yulia G. Ermakova², Vsevolod V. Belousov², Rafael Radi³, Joseph S. Beckman⁴, Garry R. Buettner⁵, Nicolas Demaurex⁶, Michael R. Duchen⁷, Henry J. Forman^{8,9}, Mark D. Fricker¹⁰, David Gems¹¹, Andrew P. Halestrap¹², Barry Halliwell¹³, Ursula Jakob¹⁴, Iain G. Johnston¹⁵, Nick S. Jones¹⁵, David C. Logan¹⁶, Bruce Morgan¹⁷, Florian L. Müller¹⁸, David G. Nicholls¹⁹, S. James Remington²⁰, Paul T. Schumacker²¹, Christine C. Winterbourn²², Lee J. Sweetlove¹⁰, Andreas J. Meyer¹, Tobias P. Dick¹⁷ & Michael P. Murphy²³

But...

[NAD⁺] is usually low under normal conditions

Succinate to drive RET would normally come from upstream dehydrogenases (α KGDH) that consume NAD⁺

So... if RET occurs, where could those backward flowing electrons go, if not onto NAD⁺?

What about a complex pathologic situation?

Lots of Complex I inhibitors are protective against cardiac IR injury

Rotenone, Amobarbital, Volatile Anesthetics, S-nitrosothiols, Ranolazine, Capsaicin, Metformin, Ischemic Preconditioning

Original idea.... Slow reversal of inhibition at reperfusion allows more "gradual wake up" of respiration, avoids surge of ROS

BUT... lots of Complex II inhibitors are also protective against cardiac IR injury

Diazoxide, 3-NP, Nitro-linoleate, HNO, Atpenin A5, Malonate, Methyl-malonate

Complex II doesn't contribute much to respiration, especially in the heart which is mostly reliant on β -oxidation

